A monotonicity preserving transformation for confidence regions of unsymmetric multivariate data

F. Sobieczky, B. Sponer. A monotonicity preserving transformation for confidence regions of unsymmetric multivariate data. 5, 2017.

Autoren
  • Florian Sobieczky
  • Birgit Sponer
TypSonstiges
Monat5
Jahr2017
Abstract

For the purpose of producing more accurate confidence regions for non-symmetric continuous multivariate unimodal data we introduce and validate a method which bijectively maps the sample space by a non-linear transformation which preserves convexity of the pdf's contour-surfaces. Polygonal shaped confidence regions are defined using a generalization of the Triakis Tetrahedron to d dimensions. Comparison with distributions of higher sphericity and different decay properties become possible. A simulation study for several multi-normal non-symmetric distributions exemplifies the method's power and its criteria of applicability.