Treating missing data in Industrial Data Analytics

Authors Lisa Ehrlinger
Thomas Grubinger
Bence Gábor Varga
Mario Pichler
Thomas Natschläger
Jürgen Zeindl
Editors Pit Pichappan
Adrian Florea
Muhammad Asif Naeem
Title Treating missing data in Industrial Data Analytics
Booktitle Proceedings of the 13th International Conference on Digital Information Management (ICDIM 2018)
Type in proceedings
Publisher IEEE
ISBN 978-1-5386-5243-5
Month September
Year 2018
Pages 148-155
SCCH ID# 18059

With the advent of Industry 4.0, many companies aim at analyzing historically collected or operative transaction data. Despite the availability of large amounts of data, particular missing values can introduce bias or preclude the use of specific data analytics methods. Historically, a lot of research into missing data comes from the social sciences, especially with respect to survey data, whereas little research work deals with industrial missing data. In this paper, we (1) describe challenges that occur with missing data in the context of industrial data analytics, and (2) present an approach for handling missing data in industrial databases, which has been applied at voestalpine Stahl GmbH. In addition, we have evaluated different methods to impute missing values in our application data.