H. Eghbal-zadeh, K. Koutini, V. Haunschmid, P. Primus, M. Lewandowski, W. Zellinger, G. Widmer. Adversarial robustness in data augmentation. Published as a workshop presenation at ICLR 2020 Workshop Towards Trustworthy ML: Rethinking Security and Privacy for ML, Addis Ababa, Ethiopia, April, 2020.
L. Fischer, L. Ehrlinger, V. Geist, R. Ramler, F. Sobiezky, W. Zellinger, D. Brunner, M. Kumar, B. Moser. AI System Engineering - Key Challenges and Lessons Learned. Machine Learning & Knowledge Extraction, volume 3, number 1, pages 56-83, DOI: 10.3390/make3010004, December, 2020.
L. Fischer, L. Ehrlinger, V. Geist, R. Ramler, F. Sobieczky, W. Zellinger, B. Moser. Applying AI in practice: Key challenges and lessons learned. Machine Learning and Knowledge Extraction. CD-MAKE 2020, volume 12279, pages 451-471, DOI 10.1007/978-3-030-57321-8_25, Springer, August, 2020.
R. Nikzad-Langerodi, B. Moser, W. Zellinger, S. Saminger-Platz. Domain-invariant regression under Beer-Lambert’s Law. In M. Wani, T. Khoshgoftaar, D. Wang, H. Wang, N. Seliya (editors), Proceedings of the 18th IEEE International Conference of Machine Learning and Applications (ICMLA 2019), pages 581-856, DOI 10.1109/ICMLA.2019.00108,, IEEE, February, 2020.
W. Zellinger, T. Grubinger, M. Zwick, E. Lughofer, H. Schöner, T. Natschläger, S. Saminger-Platz. Multi-source transfer learning of time series in cyclical manufacturing. Journal of Intelligent Manufacturing, volume 31, pages 777-787, DOI: 10.1007/s10845-019-01499-4, March, 2020.
W. Zellinger, B. Moser, T. Grubinger, E. Lughofer, T. Natschläger, S. Saminger-Platz. Robust unsupervised domain adaptation for neural networks via moment alignment. Information Sciences, volume 483, number 5, pages 174-191, DOI: 10.1016/j.ins.2019.01.025, May, 2019.