Automatic design of semantic similarity controllers based on fuzzy logics

J. Martinez-Gil, J. Chaves-Gonzalez. Automatic design of semantic similarity controllers based on fuzzy logics. Expert Systems with Applications, volume 131, pages 45-59, DOI 10.1016/j.eswa.2019.04.046, 10, 2019.

Autoren
  • Jorge Martinez-Gil
  • Jose Manuel Chaves-Gonzalez
TypArtikel
JournalExpert Systems with Applications
Band131
DOI10.1016/j.eswa.2019.04.046
Monat10
Jahr2019
Seiten45-59
Abstract

Recent advances in machine learning have been able to make improvements over the state-of-the-art regarding semantic similarity measurement techniques. In fact, we have all seen how classical techniques have given way to promising neural techniques. Nonetheless, these new techniques have a weak point: they are hardly interpretable. For this reason, we have oriented our research towards the design of strategies being able to be accurate enough but without sacrificing their interpretability. As a result, we have obtained a strategy for the automatic design of semantic similarity controllers based on fuzzy logics, which are automatically identified using genetic algorithms (GAs). After an exhaustive evaluation using a number of well-known benchmark datasets, we can conclude that our strategy fulfills both expectations: it is able of achieving reasonably good results, and at the same time, it can offer high degrees of interpretability.