DeblurGAN: Blind motion deblurring using conditional adversarial networks
O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas. DeblurGAN: Blind motion deblurring using conditional adversarial networks. pages 8183-8192, DOI 10.1109/CVPR.2018.00854, 12, 2018. | |
Autoren | |
Buch | Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018) |
Typ | Konferenzband |
DOI | 10.1109/CVPR.2018.00854 |
ISBN | 978-1-5386-6420-9 |
Monat | 12 |
Jahr | 2018 |
Seiten | 8183-8192 |
Abstract | We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss . DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem -- object detection on (de-)blurred images. The method is 5 times faster than the closest competitor -- DeepDeblur. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. |