Machine learning framework for Mathematica - Creating understandable computational models from data

M. Drobics. Machine learning framework for Mathematica - Creating understandable computational models from data. pages online, 4, 2003.

Autoren
  • Mario Drobics
BuchProc. Mathematica Developer Conf. 2003
TypIn Konferenzband
Monat4
Jahr2003
Seitenonline
Abstract The machine learning framework for Mathematica is a collection of powerful machine learning algorithms integrated into a framework for the main purpose of data analysis. Fuzzy logic is one of its key techniques. The framework allows for combining different machine learning algorithms to solve one single problem. This combination of distinct algorithms may give the user unforeseen insights into its data. The algorithms are highly parameterizeable. Given this parameterizeability combined with the efficient core engine of the machine learning framework for Mathematica the user is able to look at his data with changed parameters in real time.